Cryptotanshinone Regulates Androgen Synthesis through the ERK/c-Fos/CYP17 Pathway in Porcine Granulosa Cells

نویسندگان

  • Danfeng Ye
  • Meifang Li
  • Yuehui Zhang
  • Xinhua Wang
  • Hua Liu
  • Wanting Wu
  • Wanying Ma
  • Kewei Quan
  • Ernest H Y Ng
  • Xiaoke Wu
  • Maohua Lai
  • Hongxia Ma
چکیده

The aim of the study is to investigate the molecular mechanism behind androgen reduction in porcine granulosa cells (pGCs) with Salvia miltiorrhiza Bunge extract cryptotanshinone. PGCs were isolated from porcine ovaries and identified. Androgen excess model of the pGCs was induced with the MAPK inhibitor PD98059 and then treated with cryptotanshinone. The testosterone level was measured by radioimmunoassay in the culture media. The protein levels of P-ERK1/2, c-Fos, and CYP17 in the cells were measured by western blot. Cryptotanshinone decreased the concentration of testosterone and the protein level of CYP17 and increased the protein levels of P-ERK1/2 and c-Fos in the androgen excess mode. After the c-Fos gene was silenced by infection with c-Fos shRNA lentivirus, we measured the mRNA expression by quantitative RT-PCR and protein level by western blot of P-ERK1/2, c-Fos, and CYP17. This showed that the mRNA expression and protein level of P-ERK1/2 and c-Fos were significantly reduced in the shRNA-c-Fos group compared to the scrambled group, while those of CYP17 were significantly increased. So we concluded that cryptotanshinone can significantly reduce the androgen excess induced by PD98059 in pGCs. The possible molecular mechanism for this activity is regulating the ERK/c-Fos/CYP17 pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryptotanshinone Reverses Reproductive and Metabolic Disturbances in PCOS Model Rats via Regulating the Expression of CYP17 and AR

Objective. To explore the effect of Cryptotanshinone on reversing the reproductive and metabolic disturbances in polycystic ovary syndrome (PCOS) model rats and the possible regulatory mechanisms. Methods. PCOS model rats were induced by subcutaneous injection of dehydroepiandrosterone (DHEA) and verified by histological screening of vaginal exfoliated cells. After Cryptotanshinone intervention...

متن کامل

Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.

A cure for prostate cancer (CaP) will be possible only after a complete understanding of the mechanisms causing this disease to progress from androgen dependence to androgen independence. To carry on a careful characterization of the phenotypes of CaP cell lines before and after acquisition of androgen independence, we used two human CaP LNCaP sublines: LNCaP(nan), which is androgen dependent (...

متن کامل

Pioglitazone inhibits androgen production in NCI-H295R cells by regulating gene expression of CYP17 and HSD3B2.

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the ...

متن کامل

The AP-1 family member FOS blocks transcriptional activity of the nuclear receptor steroidogenic factor 1.

Steroid production in the adrenal zona glomerulosa is under the control of angiotensin II (Ang II), which, upon binding to its receptor, activates protein kinase C (PKC) within these cells. PKC is a potent inhibitor of the steroidogenic enzyme CYP17. We have demonstrated that, in the ovary, PKC activates expression of FOS, a member of the AP-1 family, and increased expression of this gene is li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017